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Let lI'Q(x)=exp(-Q(x)) be a weight function and {Pn} the system of polyno­
mials orthonormal with respect to w~ on R. We show that if Q satisfies certain
technical conditions, then

where C1,C2 are constants depending upon Q alone and qnQ'(qn)=n,n=I,2, ....
The weights considered include exp( -Ixl X) when :x;:;' 4. The proof involves the use
of certain "infinite-finite range inequalities" to estimate the coefficients in a differen­
tial equation satisfied by Pn' These estimates, in turn, enables us to use a concavity
argument. ~ 1990 Academic Press, Inc.

1. INTRODUCTION

One of the classical inequalities for the orthonormal Hermite polyno­
mials h" (orthonormal on R with respect to the weight function exp( _x2

))

is the following

THEOREM 1.1 [24, Theorem 8.22.9]. Let I: > O. Then there exists a
positive constant c(l:) such that for all real x with Ixl::( (1-I:).j2;J,

(1.1 )

In recent years, there has been considerable interest in obtaining
generalizations and refinements of this theorem for Freud polynomials, i.e.,
polynomials orthonormal on R with respect to a weight function of the
form exp( -2Q(x)) [22,23,13,14,3,4,1]. A typical result is the following

* This work was done in part during a sabbatical leave from the California State Univer­
sity, Los Angeles and in part during the author's visit to the Center for Approximation
Theory, Texas A&M University, College Station.
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(1.2 )

THEOREM 1.2 [4, 13]. Let m be an er;en positir;e integer and {Pn} the
system of polynomials orthonormal on R with respect to exp( -x"'). Then,

jexp( -xm /2) p,,(x)((2/3n 1
/
m ? - x2f4! :::; c

for !xl:::; 2f3n 1
"
m

, n = 1, 2, ... ,

where c is a constant depending upon m alone and

(J'~ 1(m/2)11m
f3 '= ~ >. lr(m+ Ij2)j .

All of the results known to the author in this direction concern the case
when Q is a polynomial. (See, however, the announcement in [12].) An
essential ingredient of the proofs is detailed information about the
asymptotic behavior of the recurrence coefficients for the orthogonal
polynomials.

In this paper, we obtain an analogue of Theorem 1.2 for polynomials
orthonormal on R with respect to a weight function of the form
exp( - 2Q(x)) where Q is a "general" function. The main idea is essentially
to use a differential equation satisfied by these polynomials and a concavity
argument as in [4]. However, practically no information is known about
the recurrence coefficients for the "general" weight functions. We shaH rely
upon our results with Saff in [20] to obtain some relatively crude estimates
on these coefficients and other quantities in the differential equation. These
estimates will then help us to deduce an analogue of Theorem 1.2. Of
course, our result is not as sharp as Theorem 1.2 but is sufficient in many
applications [9-11, 18, 23].

After the first draft of this manuscript was submitted, we learned from
Doron Lubinsky that he has, in fact, obtained the Plancherel-Rotach-type
asymptohcs for polynomials orthogonal on R with respect to a weight
function belonging to a fairly general class of weights. His results imply our
results as a special case, and are valid, in particular, for the weights
exp( -Ixl') when rL> 3. To the best of our knowledge, our approach in
general, a.nd, in particular, the simplification of the differential equation as
well as the estimation of the various quantities appearing in the equation
remain as the novel features of this paper. The simplification, in fact, has
been used in the study of Hermite interpolation based at the zeros of Freud
polynomials [21]. Using the ideas of [21 J, it seems possible that our con­
ditions on the weight function can be relaxed somewhat so as to include
the weights exp( -Ixl') when rL > 3. In the light of Lubinsky's results, Vie

choose not to do so in this paper.
In the next section, we state the precise conditions on the weight func­

tion and discuss the main results. These results wii! be proved in Section 3.
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I thank Paul Nevai, for his kind encouragement in this work, including
making [1, 4J available to me as well as Doron Lubinsky for his several
comments.

2. MAI)J' RESULTS

We shall consider weight functions of the form w~ where
wQ(x) := exp( - Q(x)). Throughout this paper, we shall adopt the following
convention. The symbols c, C j , ... will denote constants depending upon Q
alone. Their values may be different at different occurrences, even within
the same formula. A ~ B will mean cjA ~ B ~ czA. The class of all polyno­
mials of degree not exceeding n will be denoted by Iln •

We shall assume the following conditions on wQ .

(Wl) Q is an even, convex function in C 4(R) and tQ'(t)--+ ex; as
It I --+ oc.

(W2) Let qn be the least positive solution of the equation

Then for every c> 0 and Cj < It I < Ixl ~ cqn'

I
Q'(t)/ IQ'(X)I -4-t3- ~CZ ~ ~c3nqn ,

I
t3Q(4)(t) Is:..

Q'(t) ",C Z

(2.1 )

(2.2a)

(2.2b)

(W3) For the numbers qn defined in (2.1), qZn-qn'

We do not claim that these conditions are independent. They are all
satisfied when Q(x) = Ixl", ex ~ 4, which are some of the prototypical Freud
weights. Another example is the weight Ixl If exp( -Ixl "), ct ~ 4, f3 > O. We
note the following simple consequences of our conditions which will be
needed later.

Q(lxl)~Q(y) if Ixl ~y (2.3 )

IxQ"(x) Is:. if Ixl ~Cj (2.4)
Q'(x) -:. C

Ix 2

Q"'(x) Is:. C if lxl ~Cj' (2.5)
Q'(x) '"

A consequence of our results with Saff in [19, 20J is the following
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THEOREM 2.1. Let O<p, r<x-. There exists a sequence {a,,(Q)} and
positive constants c j , Cz depending upon p, r, Q alone such that for euery
n = 1, 2, ... and P E JI,,,

~ C j exp( -czn) f IwQ(t) P(tW dt,
"'it: ~anfQ)

~ c j exp( -czn) J !wQ(t) PUJI' dt,
1;1,,; an(Q)

We caution the reader that the notation here is different from that in
[19,20]. We can, in fact, take [19]

In particular, for any p, r > 0,

al/(Q)~q". (2.8a)

(2.8b)

We shall denote al/(Q/2) by all"
Let {p,,} denote the system of polynomials orthonormal on R with

respect to wt,
"() ", n( .= ... , -t-. .. = "., y - yp" X ;l/X' Il/ -- --k.n)

k~l

',/,,>0, (2.9b)

r
x

Pl/(t) Pm(t) w~(t) dt = .5l/rtl •

"'-x·

Our main theorem is the following.

(2.9c)

THEOREM 2.2. If Q satisfies the conditions (W1), (W2), (W3), [hen
there exist constants Cl, Cz > 0 such that

(2.10 )

We note the following consequences of our theorem which might be of
some interest in applications.
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COROLLARY 2.3. There exists a constant c with the property that for any
e>O,

r p~(x) w~(x) dx> l-e,
'"'Ixl ~ (Ban

COROLLARY 2.4. (cf. [3.14]). For n= 1, 2, ...,

n= 1, 2, .... (2.11 )

It seems probable that a more precise version of Theorem 2.2, similar to
Theorem 1.2, is true. The techniques known to the author for proving such
inequalities, however, require that the sequence {a;IYn_rlrn} converges at
a "good" rate as n - 00. While the convergence itself is known for a large
class of weight functions [15], the rate is known only in the case when Q
is a polynomial of even degree and positive leading coefficient [2,16,17].

3. PROOFS

The first step in our proof of Theorem 2.2 is to obtain a differential
equation satisfied by Pn' This equation does not really require the condi­
tions (WI), (W2), and (W3) on Q. In each of the results stated below
while obtaining this equation, we assume only that wQ is a weight function
and Q has sufficiently many continuous derivatives to make the various
quantities involved well defined.

We begin by recalling certain standard properties of orthogonal polyno­
mials.

PROPOSITION 3.1 [5]. (a)

XP"_I(X) = p"p,,(x) + f3nPn-I(X) + Pn-l Pn-2(X),

where

(b) For every polynomial P E Iln _ 1> X E R,

P(x) =JP(t) Kn(x, t) w~(t) dt,

where

X E R, n = 2, 3, ...,

(3.1a)

(3.1b)

(3.2a)

K( t) ·=n~l () (t)= P,,(X)Pn-I(t)-Pn(t)P,,-I(X)
"x, . L, Pk X Pk Pn .

k=O x-t
(3.2b)
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(e) Let

A,,(X):= {K,,(x, X)}-l.

Then

243

(3,3 -'

In particular,

(d) For every PEII2"_1'

• n

IP(t) w~(t) dt= I i_k"P(Xk.,,).
.; k= 1

(e)

(3.6 )

11= 1, 2, .... (3.7)

Next, we obtain an expression for p~ in terms of Pn and Pn--l (cf. [4]).

THEOREM 3.2. For n = 1, 2, ..., X E R,

p~(x) = A ll (x) Pll-1(X) - B,,(x) p,,(x),

where, »'ith

Q-( ).= Q'(t)- Q'(x)x, t . ,
t- y

we hare

(3.8a)

(3.8b)

An(x) := 2Pn Jp~(t) w~(t) Q(x, t) dt (3.8c)

Proof of Theorem 3.2. In view of Proposition 3.1 (b),

p~(x) = Jp~(t) Kn(x, t) w~(t) dt. (3.9)
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If we integrate by parts and observe that Pn is orthogonal to (i3!et) Kn(.>::, t),
which is a polynomial of degree at most n - 2 in t, then we get

p~(X) = 2fPn(t) Kn(x, t) Q'(t) w~(t) dt.

Since Pn is orthogonal to Kn(x, t), we see that for any constant K,

(3.10)

p~(x) = 2 JPn(t) Kn(x, t)(Q'(t) - K) wb(t) dt. (3.11)

We choose K=Q'(x) and use (3.2b) to arrive at (3.8). I
We note one corollary of (3.11) which will be used in the sequel.

COROLLARY 3.3. For any K E Rand n = 1, 2, ...,

(3.12 )

Proof Equation (3.11) shows that p~(x)/2 is the nth partial sum of the
orthonormal expansion of the function Pn(x)(Q'(t)-K). We get (3.12) by
using Bessel's inequality and (3.7). I

Next, we use some ideas originating from Shohat and also from Nevai,
and perform some elementary computations based on (3.la) and (3.8a) to
obtain, as in [4, 1],

THEOREM 3.4. For n = 2, 3, ..., and x E R,

(3.13a)

lA"here

(3.13b)

(3.13c)

We pause to make the following observation which will simplify the
expressions for M n and N n .
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PROPOSITION 3.5. For n = 2, 3, ..., X E R,

B() B () _x-f3nA 'x\--?Q"Y)
n X + n-l X ,,-l~--;- - \"".

Pn-l

Proof Using (3.8) and (3.1a), we get

B,,(x) + B._l(x)

_ ?Q'() x - Pn A (), 2 r 2 , Q'( \ .,.2 ' ) "- -- x +--. ,,-LX --t- I Pn-l\t) t; ;'oU at.
Pn-l ' -

Using integration by parts, we see that

245

(3.14)

(3. i 5)

Thus, (3.15) gives (3.14). I
Following [4, 1], we next use a standard technique in the theory of

differential equations to convert Eq. (3.l3a) into an equation without the
"middle term." We note first that since Q is convex, An(x) > 0 for every
xER.

THEOREM 3.6. For n = 2, 3, ..., X E R, let

Zn(X) := Pn(x) w~(x) A;12(X).

Then

Z~(X) + q>n(x) z,,(x) = 0,

where

1 ? 1
..... '- 7\/ --M---l''''
'¥n .-H n 4 " 2 "1".

(3.16 )

(3.17a)

{3.17b J

The proof of Theorem 3.6 is an elementary computation and hence is
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omitted. The only remark we wish to make is that there is no "correction
term" in the expression for Zn' as a result of (3.14).

Next, we proceed to show that, in fact, <1>n(x) "'" (njan? if Ixl ~ caf/" This
is the part where we require all the assumptions (WI), (W2), and (W3) on
the weight function. These are therefore assumed in the sequel.

First, we obtain some estimates on p" and An. We do not claim that the
estimates on p" are new [6-8J, but since they are not difficult, we include
the proof.

PROPOSITION 3.7. Let Q satisfy the conditions (WI), (W2), and (W3)
defined in the beginning of Section 2. We have

For every L> 1,

(3.18)

if Ixl ~ La". (3.19)

A critical aspect of the proof is to prove certain "infinite-finite range
inequalities" for the integrals which arise in connection with Pn and An(x).

LEMMA 3.8. Let Q satisfy the conditions (WI), (W2), and (W3) defined
in the beginning of Section 2.

(a)

r Q,z(t) wQ(t) dt ~ cQ'(y) wQ(Y)
"It I ;;. y

(3.20)

(b)

r p~(t) Q'Z(t) w~(t) dt~cI exp( -czn). (3.21)
"'It I ;;. an

(c) If L > 1, Ixl ~ Lan, and £ > 0, then

j(2p n )-1 An(x) - f p~(t) Q(x, t) w~(t) dtl ~S exp( -czn), (3.22)
itl "" (L + e) an £

Ii/here c l , Cz may depend upon L.

Proof of Lemma 3.8. (a) Using (2.4) and (WI), we observe that
Q"(t)jQ,z(t) --+ 0 as Itl--+ ,X). Consequently, if It I> c, then

wQ(t) = {Q,z(t) - Qn(t)} wQ(t) "'" Q,z(t) wQ(t). (3.23)

The estimate (3.20) now follows upon integrating (3.23).
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(b) Using (2.6) with 1'=2 and Q/2 in place of Q, we get

WQ(t)p~(t)~Clexp(-C2n) \ wQ(u)p;,(u)du
,; ~u: ~ an.

247

Hence, if n is large enough, (3.20) yields

I p;,(t) Q,2(t) w~(t) dt
0; itl ~an

(3.24 )

~ C1 exp( -c2n) H·Q
1(an ) I Q'L(t) wQ(tl de

"It! ~a..:

~ C1 exp( -C2n) Q'(an )

~Cl exp( -C3n).

(c) When Ixl~Lanand Itl~(L+8)anthenit-xi~w,,, whiie

IQ'(t) - Q'(x)1 ~ C IQ'(t)! ~ CQf2(t).

Hence, (3.21) yields that

The estimate (3.22) now follows from (3.8c). I
Proof of Proposition 3.7. First, we observe that an application of the

Schwarz inequality gives, for every A> 0,

f ItPn(t)Pn_l(t)W~(t)!dt~A. (3.25)
• itl '" A

Using Theorem 2.1, (2.8), and (3.25) with A = can for an appropriate
choice of c, we get

I !tPn(t)P,,-l(t) w~(t)i dt ~ c, exp( -C2 11). (3.26)
oJ It\ ~can

In view of (3.25), (3.26), we have

(3.27)
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Next, It L> 1. In view of the mean value theorem, (2.4), and (2.2), when
Ixl ~Lan'

J
2 - 2

Pn(t) Q(x, t) wQ(t) dt
It I ~2La"

n '" "? n~C2 p;,(t)WQ(t)dt~C2'
an J Itl ~ 2La" an

Therefore, (3.27) and (3.22) (with e = L) imply that, for every L> 1,

(3.28 )

(3.29)

In view of (2.8), Theorem 2.1, Theorem 3.2, we see that for sufficiently
large L,

rp~2(t)wb(t)dt~2f Ip;,(t)wQ(t)!2dt
• It I~ La"

+t~La" B~(t)p~(t) Wb(t)dt}. (3.30)

Now, (3.29) implies that

r A~(t)P~_I(t)Wb(t)dt~c(!!.-)2.
'Itl~Lan an

(3.31 )

Using the Schwarz inequality in (3.8d), and the estimates (3.27), (3.28), it
is readily seen that

for every L > 1. (3.32 )

Substituting from (3.32) and (3.31) into (3.30), we get

Jp~2(t) H'b(t) dt~c (:J2

•

In view of (3.7), this yields Pn ~ can"
Finally, we prove the first inequality in (3.19). Let L>1. If Ixl~Lan'

then it is not difficult to deduce, using Lemma 3.8(b) and (2.2) that
r

J p;;(t)w~(t){Q'(t)-Q'(x)}2dt~clexp(-c2n). (3.33)
itl ;?:2Lan
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Consequently, (3.18) and (3.12) yield that

Next, if Iti ~ 2Lan , then

!(t - x)(Q'(t) - Q'(x))! ~ canQ'(anJ ~ en.

So, since Q is convex, (3.34) implies that

I p;,(t)Q(x,t)w~(l)dt
.. ![~ ~ 2Lan

The first inequality in (3.19) now follows from (3.22) and (3.18). I
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(3.34 ')

(3,35)

We also need estimates on A~, B~, A~. These are obtained exactly in the
same way as the upper estimates on A,,, using the mean value theorem,
(2.2), (2.4), (2.5), and Lemma 3.8. We omit the proofs, but note the result
below.

PROPOSITION 3.9. Let Q satisfy the conditions (Wl), (W2), and CW3)
defined in the beginning of Section 2. Let L> 1. Then, for Ixi ~ Lan,

iA:;lr)1 ~ c(L) na,;-r-l,

!B:;J(x)! ~ c(L) na;;'-I,

r = 0, 1, 2.

r = 0, 1. 2.

(3.36 )

{3.37}

We would like to observe that in proving Propositions 3.7 and 3.9, we
did not really need the fact that Q is even. In order to estimate r[Jn, we will,
however, need a more refined estimate on B". At this time, we are able to
do so only when Q is even.

PROPOSITION 3.10. Let Q satisfy the conditions (W1), (W2), and (W])

defined in the beginning of Section 2. For an}' L> 1 and [xi ~ La ll •

n IXI
iB,,(x)l~c(L)--''.

an an
(3.38 )

Proof. Since Q is even, pn(t) Pn_ 1(t) is an odd function of 1. Conse-
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quently, (3.8d) shows that Bn(O) =0. Estimate (3.38) now follows from the
mean value theorem and (3.37). I

We are now in a position to estimate f/J n •

THEOREM 3.11. Let Q satisfy the conditions (WI), (W2), and (W3)
defined in the beginning of Section 2. There exists a positive constant :x,
depending upon Q alone, such that for Ixl ~ (lan,

(3.39)

Proof Since Q is even, the parameter fJn in (3.1a) is zero. Conse­
quently, (3.13c) becomes

T AAx)An-1(x)Pn An_1(x)B,,(x)x
N ,,(x) := - ---...:.:.........e:.-:.--,-...:..:....:---,--

Pn--l Pn-l

Let Ixl ~ :xa,,, where 0 < y. < 1 will be chosen later. In view of Proposi­
tions 3.7, 3.9,

Propositions 3.7, 3.9, 3.10 also yield that

AnAn-1anPn (n)2
----'-=-----'-=-----=----=-"- ~ m 1 -

Pn-l an

(3.41)

(3.42a)

(3.42b)

where m\ and m 2 are constants depending only on Q. Since :x ~ 1, they do
not depend upon a, as it might appear. Next, Propositions 3.5, 3.9, and
estimates (2.2) yield that

Propositions 3.5, 3.9, and estimates (2.2) also show that

c (n)2
IM~(x)1 ~- - .

n an

(3.43 )

(3.44 )
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Substituting from (3.44), (3.43), and (3.41) into (3.17), we see that

Substituting from (3.44), (3.43), and (3.42) into (3.17), we get

We now choose

to get, for ixi ::;;'XG,,,

j .... ,
L...Jl

(3.45 )

(3.46 )

(3.47 )

(3.48 )

The remainder of our paper uses the same argument as in [4, 1J. First,
if we compare the differential equation

(
n \2

Y"+c -I Y=O
an)

for judiciously chosen constants c with (3.17), then Sturm's companson
theorem [24] with Theorem 3.11 yields the following

COROLLARY 3.12 (c£. [8J). Let Q satisfy the conditions (Wl), (W2),
and (W3) defined in the beginning of Section 2. For the consecutire zeros
Xk.." X k + l.n ofP,,, which lie in the interval [ -:xa,,, 'XGnJ, we have

(3.50)

Next, we need a technical estimate.

LEMMA 3.13. Let Q satisfy the conditions (WI), (W2), and (W3) defined
in the beginning of Section 2. With the numbers lokI! defined in (3.5), we haDe

Proof The equality in (3.51) follows from (3.5) and (3.8a); the
inequality follows from Proposition 3.7. I

Proof of Theorem 2.2. Let x be fixed such that lxl::;; :1.0,,':2,
x E [Xi + l.n' xi."J s;: [ -'Xa,,, 'Xan ]. Then Theorem 3.11 and (3.17) show that
Izi :=lz,,1 is concave on [Xi+l,n,Xt.n]. Hence, the area of the triangle
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bounded by the x-axis, the vertical line through the point (x,O), and the
line joining the points (x, Iz(x)/), (x/,n,O) is not more than the area
bounded by the x-axis, the vertical line through the point (x,O), and the
graph of /zl. Thus,

1 rXI,n
:2lz(x)(x/,n-x)/<.x /z(t)ldt. (3.52 )

We now use the Schwarz inequality, Proposition 3.7, (3.6) (with
P(t):= p;,(t)(t-x/,n)-2), and Lemma 3.13 to get

an ( )31'2')< c - Xl. n- X /lIn Pn (X/,nn .

(3.53 )

With (3.50), this gives

Iz(xW = IPn(x) wQ(xW A;I(X)

(3.54 )

Since An(x) <cn/an, this completes the proof of Theorem 2.2. I

Corollary 2.3 is obvious and so is the second inequality in (2.12). Under
conditions on Q much less restrictive than ours, Freud proved in [6]
(cf. (2.8a)) that

IXk,n I< can' (3.55)

The first inequality in (2.12) follows from this and the identity

together with Proposition 3.7. This completes the proof of Corollary 2.4. I
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YOle added in proof The author has recently extended the estimate (2.W) for more general
Freud-eype weights, including exp( - iXj X) when 7. > j. These resuts will be ptiblished if: due
course.
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